Monotone Iterative Technique for Finite Systems of Nonlinear Riemann-liouville Fractional Differential Equations
نویسندگان
چکیده
Comparison results of the nonlinear scalar Riemann-Liouville fractional differential equation of order q, 0 < q ≤ 1, are presented without requiring Hölder continuity assumption. Monotone method is developed for finite systems of fractional differential equations of order q, using coupled upper and lower solutions. Existence of minimal and maximal solutions of the nonlinear fractional differential system is proved.
منابع مشابه
Extremal system of solutions for a coupled system of nonlinear fractional differential equations by monotone iterative method
In this paper, we deal with a coupled system of nonlinear fractional differential equations, which involve the Riemann-Liouville derivatives of different fractional orders. By using the monotone iterative technique combined with the method of upper and lower solutions, we not only obtain the existence of extremal system of solutions, but also establish iterative sequences for approximating the ...
متن کاملIterative scheme to a coupled system of highly nonlinear fractional order differential equations
In this article, we investigate sufficient conditions for existence of maximal and minimal solutions to a coupled system of highly nonlinear differential equations of fractional order with mixed type boundary conditions. To achieve this goal, we apply monotone iterative technique together with the method of upper and lower solutions. Also an error estimation is given to check the accuracy of th...
متن کاملFractional Problems with Right-handed Riemann-liouville Fractional Derivatives
Abstract: In this paper, we investigate the existence of solutions for advanced fractional differential equations containing the right-handed Riemann-Liouville fractional derivative both with nonlinear boundary conditions and also with initial conditions given at the end point T of interval [0,T ]. We use both the method of successive approximations, the Banach fixed point theorem and the monot...
متن کاملPresentation of two models for the numerical analysis of fractional integro-differential equations and their comparison
In this paper, we exhibit two methods to numerically solve the fractional integro differential equations and then proceed to compare the results of their applications on different problems. For this purpose, at first shifted Jacobi polynomials are introduced and then operational matrices of the shifted Jacobi polynomials are stated. Then these equations are solved by two methods: Caputo fractio...
متن کاملSolving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
متن کامل